General Navigation (061)

The EASA learning objectives for the course “General Navigation” is listed below. The objective links to the corresponding theory and/or example exam-questions.

Note: objectives colored red are not (yet) covered.

061.01 Basics of navigation
061.01.01 The Earth
061.01.02 Position
061.01.03 Direction
061.01.03.01 Datums
061.01.04 Distance
061.01.04.01 WGS-84 ellipsoid
061.01.04.01.01 State that 1 NM is equal to 1.852 km, which is the average distance of 1′ of latitude change on the WGS-84 ellipsoid.
061.01.04.01.02 State that 1′ of longitude change at the equator on the WGS-84 ellipsoid is approximately equal to 1 NM.
061.01.04.02 Units
061.01.04.02.01 Convert between units of distance (nautical mile (NM), kilometre (km), statute mile (SM), feet (ft), inches (in)).
061.01.04.03 Graticule distances
061.01.04.03.01 Calculate the distance between positions on the same meridian, on opposite (antipodal) meridians, on the same parallel of latitude, and calculate new latitude/longitude when given distances north-south and east-west.
061.01.04.04 Air mile
061.01.04.04.01 Evaluate the effect of wind and altitude on air distance.
061.01.04.04.02 Convert between ground distance (NM) and air distance (NAM) using the formula: NAM = NM × TAS/GS.
061.01.05 Speed
061.01.05.01 True airspeed (TAS)
061.01.05.01.01 Calculate TAS from CAS, and CAS from TAS by: mechanical computer; and rule of thumb (2 per cent per 1 000 ft).
061.01.05.02 Mach number (M)
061.01.05.02.01 Calculate TAS from M, and M from TAS.
061.01.05.03 CAS/TAS/M relationship
061.01.05.03.01 Deduce the CAS, TAS and M relationship in climb/descent/cruise (flying at constant CAS or M).
061.01.05.03.02 Deduce CAS and TAS in climb/descent/cruise (flying at constant CAS).
061.01.05.04 Ground speed (GS)
061.01.05.04.01 Calculate headwind component (HWC) and tailwind component (TWC) by: trigonometry; and MDR.
061.01.05.04.02 Apply HWC and TWC to determine GS from TAS and vice versa.
061.01.05.04.03 Explain the relationship between GS and TAS with increasing WCA.
061.01.05.04.04 Calculate GS with: mechanical computer (TOV solution); and MDR (given track, TAS and WV).
061.01.05.04.05 Perform GS, distance and time calculations.
061.01.05.04.06 Calculate revised GS to reach a waypoint at a specific time.
061.01.05.04.07 Calculate the average GS based on two observed fixes.
061.01.05.05 Flight log
061.01.05.05.01 Enter revised navigational en-route data, for the legs concerned, into the flight plan (e.g. updated wind and GS and correspondingly losses or gains in time and fuel consumption).
061.01.05.06 Gradient versus rate of climb/descent
061.01.05.06.01 Estimate average climb/descent gradient (per cent) or glide path degrees according to the following rule of thumb: Gradient in degrees = (vertical distance (ft) / 100) / ground distance (NM)) Gradient in per cent = (vertical distance (ft) / 60) / ground distance (NM)) Gradient in degrees = arctan (altitude difference (ft) / ground distance (ft)). N.B. These rules of thumb approximate 1 NM to 6 000 ft and are based on the 1:60 rule.
061.01.05.06.02 Calculate rate of descent (ROD) on a given glide-path angle or gradient using the following rule of thumb formulae: ROD (ft/min) = GP degrees × GS (NM/min) × 100 ROD (ft/min) = GP per cent × GS (kt)
061.01.05.06.03 Calculate climb/descent gradient (ft/NM, per cent and degrees), GS or vertical speed according to the following formula: Vertical speed (ft/min) = (GS (kt) × gradient (ft/NM)) / 60.
061.01.05.06.04 State that it is necessary to determine the position of the aircraft accurately before commencing descent in order to ensure safe ground clearance.
061.01.06 Triangle of velocities (TOV)
061.01.07 Dead reckoning (DR)
061.01.08 Navigation in climb and descent
061.02 Visual Flight Rules (VFR) navigation
061.03 Great circles and Rhumb lines
061.04 Charts
061.05 Time